

Water Monitoring Sites

 Sites have any combination of data:

- Chemical
- Visual
- MIV

Why a State of the Streams?

- Past reports limited in scope one watershed or one parameter
- Need to look at data sets together to see the big picture

- Data trends
- Unnoticed pollutants
- Reasons for improvements
- Potential future actions
 - Educational efforts
 - Restoration sites
 - Advocacy

- 1999-2012 + past USGS data when available
- DRP, Total P, Total N, TSS, TDS
- Only baseflow
- Macroinvertebrate Assessments
 - -2000-2011
- Visual Assessments
 - -2004-2012
- Flow
 - As needed from watershed outlet
- Precipitation
 - As needed and available

Methods

- Chemical and MIV
 - Look at each site separately
 - Find outliers for each parameter
 - Graph for trends
 - Compare sites and parameters
- Visual
 - Used to interpret other findings
 - Less useful for this project

Macroinvertebrates

 Live in stream for a few week to a few years

Indicate long-term water quality

Macroinvertebrate Monitoring Sites in the Great Swamp Watershed

Macroinvertebrate Findings

Averaged Annual B-IBI Scores, 2000-2012

MIV Findings Explained

- Annual variability at many sites
- Overall increasing trend
- Regional impacts to streams?
 - Sampling date
 - Precipitation

Annual Precipitation in Northern NJ

Impacts to Macroinvertebrates

- Impoundments
 - Warm water, low DO, sediment?
- Golf courses
 - Nutrients, warm water, low DO
- Major roads
 - Road salt, misc. from cars
- High density development
 - Road salt, nutrients
- Eastern vs. western streams

Phosphorus

- Necessary for plant and animal life
- From fertilizer, human and animal waste, decaying organic matter, soils
- Excess in water bodies acts like fertilizer
 - Aquatic plants grow → plants die → fall to bottom → decomposed by bacteria → low dissolved oxygen

Findings: Phosphorus

- Highest values in summer at all sites
 - Fertilizer usage?
- 3 sites with total P averages near NJ State Std.
 - LB1 (.167 mg/l) exceeded standard 65%
 - BB1 (.084 mg/l) exceeded standard 25%
 - PROUT (.097 mg/l) exceeded standard 42%

Phosphorus Sources?

- Loantaka Brook
 - Ball fields by Morris Twp. municipal buildings
 - Seton Hackney Stables
 - Woodland WPCU
 - Kitchell Pond
- PROUT
 - Conglomeration of water quality in all other streams

Phosphorus in Black Brook

- 2 factors working against BB1
 - Near headwaters → low flow
 - Downstream from Fairmount Country Club
- GSWA's GB5 site in similar situation with similar results
- Contrast with Loantaka Brook
 - Headwaters = low flow, low TP
 - Downstream = higher TP

Total Phosphorus Exceedences at PROUT 1999-2012 8 ■ Samples without Exceedences ■ Samples with Exceedences Number of Samples March April Aug. Nov. May June July Sept. Oct.

Decreasing Total Phosphorus at PROUT 1999-2012

Seasonal Total Phosphorus at PROUT 1972-2012

USGS Trends

- USGS report Trends in the Quality of Water in New Jersey Streams, Water Years 1998-2007:
 - Decreasing TP at 12/17 stations including site on Dead River and Passaic River at Two Bridges
 - Increasing TDS at 24/70 stations including Dead River and Passaic River at Two Bridges

Total Dissolved Solids

- Past GSWA monitoring showed Na, Cl main constituents, especially in winter
 - Road salt impact
- Problematic for plants and animals that depend on increasingly saline streams
- Problematic for water supply
 - Cl = taste; Na = sodium restrictions?

Seasonal Total Dissolved Solids at PROUT 1923-2012

Findings: Total Dissolved Solids

- 2 sites with averages near NJ State Standard:
 - LB1 (560 mg/l), BB1 (433 mg/l)
 - LB1 exceeded 63%

Total Dissolved Solids Exceedences at LB1 2005-2008

TDS and WPCUs

- WPCU = Water Pollution Control Utility (wastewater treatment plant)
- 2 in watershed Morris Twp.
 (LB), Chatham Twp. (BB)
- High TDS in effluent from both plants
 - High TDS in influent?
- Poor MIV communities downstream from both plants

- Primrose Brook
- Passaic River (PR1)
- Great Brook
- Black Brook
- Loantaka Brook

Black Brook poorest for MIVs,
 Loantaka Brook poorest for chem

Common Threats to Our Streams

- Stormwater runoff
- Nutrients geese?
- Impoundments
- Golf courses
- Road salt

Stormwater Runoff

- Education and outreach programs for individuals
 - Rain barrel/rain garden
- Outreach to municipal and county entities
 - Pervious pavement, etc.

- Reduce runoff
- Shade streams
- Can reduce geese
- Help absorb pollutants
- Good for impoundments too!

Golf Courses

- Start the conversation
- Improve riparian buffer
 - Shade stream
 - Reduce runoff
 - Discourage geese
- Fertilizer/pesticide use

Road Salt

- Continue road salt seminars
- Advocate for salt brine use and smart salting practices

Next Steps

- Continue monitoring; expand when possible
 - Primrose Brook, Black Brook 2014-2016
 - All 6 TTC sites? All 5 streams at once?
- Continue analysis: stormflow data, DO, pH, land use, WPCU influent vs. effluent data
- Regional discussions are essential to implement recommendations

